

Laboratory Name and Location: Heat Transfer, Room.No-217 B

Lab In-charge: Mr. Mandar V. Kulkarni (Assistant Professor)

Lab Area: 70.68 Sq. m

Total Investment (INR): 4,26,650/-

List of Major Equipments:

Sr. No.	Name & Specifications of the Equipment	Photograph of the Equipment
1.	 Apparatus of determination of heat transfer coefficient for natural convection. Enclosure size: 200 mm x 200 mm x 900 mm Tube size (test cylinder) 25 mm diameter x 400 mm length. Nichrome heater (cartridge type): 400 watt Digital Control Panel LCD Display. RTD (PT 100) for temperature measurement. 	

2.	 Apparatus for determination of emissivity of metal surface. Test plate and reference plate size 140 mm dia Enclosure size is 55 cm x 30 cm x 30 cm with one side of perspex sheet Heater: 200 V400 watt, Nichrome wire type, sandwiched between mica sheets . Digital Control Panel LCD Display. RTD (PT 100) for temperature measurement. 	
3.	 Apparatus of determination of Stefan Boltzmann's constant. Copper Hemisphere Dia 200 mm (approx.) Copper Jacket Dia 250 mm (approx.) Test disc size 20 mm dia. x 1.5 mm thickness. Hot water tank with a 1.0 KW immersion heater Control panel comprises of: Supply for heater. Digital temperature indicator 0 200 °C with 0.1 °C least count using Chormel - Alumel thermocouples. Provided with cold junction compensation. Built in timer with indicator for temperature readings at 5 seconds interval 	

4.	 Apparatus for Unsteady State Heat Transfer. > Test piece -25 x 30 cm long, Copper and Mild Steel 01 each. > Electric heater: Band Type Nichrome Heater. > Digital Temperature Indicator. > Stop Clock. > Voltmeter: 0-100 °C. > Ammeter: 0- 2 A 	UNSTEADY STATE OF HEAT TRANSFER
5.	 Apparatus of Determination of Thermal Conductivity of given Metal Rod. Copper rod, 25 mm OD and 430 mm long with insulation shell. Thermocouples: 10 nos, Chromel-Alumel Band Nichrome Heater. Dimmerstat: 2A, 230 V Multi channel Digital Temperature Indicator: 0-200 °C with 0.1 °C Least Count. 	

6.	 Apparatus of Determination of Thermal Conductivity of composite wall. Voltmeter: 0- 100 V. Ammeter: 0- 2 A Thickness of slab: 0.010 m each Diameter of slabs: 0.300 m each Wood, Mild Steel, Bakelite. Mica Heater: 400 W, 0.175 m Dia. 	<image/>
7.	 Apparatus of determination of heat transfer coefficient for forced convection. Blower: 1 HP Motor Temperature Indicator: 0-300°C Thermocouple: Chromel-Alumel Voltmeter: 0- 100 V Ammeter: 0- 2 A Nichrome Wire band type heater Dimmerstat: 0-2 A, 260 V A.C. 	

8. Trial on Parallel and Counter Flow Heat Exchanger > Length of Heat Exchanger: 2 m, > Thermometers: > Hot Water: 0-100°C, 02 nos

- Cold Water: 0-50°C, 02 nos
- Geyser: Single Phase
- ➤ Measuring Flask: 0-1000 CC,
- Inner Tube: GI/Cu I.D.: 10 mm O.D.: 12 mm
 Outer Tube: GI I.D.: 27.5 mm O.D.: 33.5 mm

Significance of the course: This course is intended to give students a distinct understanding between various modes of heat transfer, the application of heat transfer in engineering and methods to quantify amount of heat transfer.

List of Experiments	COs
Experiment No.1: Determination of thermal conductivity of given metal rod.	
Aim & Objective: To determine thermal conductivity of metal.	
Outcomes: Understanding of heat transfer in cylindrical configuration.	CO1,CO3,
Experimentation: Supply heat and flow it in controlled radial manner through setup.	CO4
Results & Discussions: Thermal conductivity of metals is calculated.	
Experiment No.2: Determination of thermal conductivity of insulating powder.	
Aim & Objective: To determine thermal conductivity of insulator.	
Outcomes: Understanding of Heat transfer in spherical configuration.	
Experimentation: Supply heat and flow it in controlled spherical manner through setup.	CO1,CO3,
Results & Discussions: Thermal conductivity of insulating powder is calculated.	CO4
Experiment No.3: Determination of thermal conductivity of composite slab.	
Aim & Objective: To determine thermal conductivity of non-metal.	
Outcomes: Understanding of Heat transfer in wall type configuration.	CO1,CO3,
Experimentation: Supply heat and flow it in controlled axial manner through setup.	CO4
Results & Discussions: Thermal conductivity of slab material is calculated.	
Experiment No.4: Determination of heat transfer coefficient in natural convection from cylinder.	
Aim & Objective: To determine heat transfer coefficient of air with natural flow.	
Outcomes: Apply nondimensional correlations for calculation of heat transfer coefficient through natural convection.	
Experimentation: Air is derived to flow due to density difference because of heating.	CO1,CO4,
Results & Discussions: Actual and Theoretical heat transfer coefficients are compared.	
Experiment No.5: Determination of heat transfer coefficient in forced convection	

from cylinder.	
Aim & Objective: To determine effect of forced flow of air on convective heat transfer.	
Outcomes: Apply nondimensional correlations for calculation of heat transfer coefficient through forced convection.	
Experimentation: Heated surface is studied under forced flow of air, for temperature variation at different locations.	CO1,CO4, CO5
Results & Discussions: Actual and Theoretical heat transfer coefficients are compared.	
Experiment No.6: Determination of critical heat flux.	
Aim & Objective: To observe boiling regimes and burning point in pool boiling.	
Outcomes: To determine critical heat flux for given metal.	
Experimentation: Water at saturated temperature is heated further using Nichrome coil. And boiling situations are observed till burning point.	CO1,CO4
Results & Discussions: Critical heat flux causes rapid heat accumulation resulting in burning.	
Experiment No.7: Experimentation on drop wise and film wise condensation.	
Aim & Objective: To determine heat transfer coefficients in drop wise and film wise condensation phenomenon	CO1 CO3
Outcomes: To differentiate and observe the phenomenon of film wise and drop wise condensation.	001,000
Experimentation: Steam from pressure cooker enters in to glass cylinder and drop wise and film wise condensation phenomenon can be observed.	
Results & Discussions: Heat transfer coefficients in drop wise and film wise condensation are compared.	
Experiment No.8: Trial on parallel and counter flow heat exchanger.	
Aim & Objective: To compare performance of heat exchanger in parallel and counter flow conditions.	CO1,CO6
Outcomes: Calculate heat transfer rates for parallel and counter flow in heat exchanger.	
Experimentation: Hot and cold water is flown in concentric pipes in same and opposite directions to exchange heat, then temperatures are measured for calculation.	

Results & Discussions: Calculation of LMTD and effectiveness for parallel and counter flow.		
Experiment No.9: Determination of the emissivity of the given surface.		
Aim & Objective: Determination of emissivity of given material in comparison with black surface.		
Outcomes: Comparative emissivity of given material is determined.	CO1, CO4	
Experimentation: Heated black and test plates are measured for surface temperature.		
Results & Discussions: Emissivity of test plate is calculated using Stefan Boltzmann's law.		
Experiment No.10: Determination of Stefan -Boltzmann's constant.		
Aim & Objective: Validation of Stefan Boltzmann's constant		
Outcomes: Calculation of Stefan Boltzmann's constant and relation of emissive power with absolute temperature.	CO1. CO4	
Experimentation: Water is heated and then the heat is transferred to a copper disc.	001,001	
Results & Discussions: Temperature gradient is plotted, and Stefan Boltzmann's constant's value is calculated		
Experiment No.11: Determination of thermal conductivity of given liquid.		
Aim & Objective: To determine thermal conductivity of given liquid.		
Outcomes: Understanding of Heat transfer in liquids.	CO1,CO3,	
Experimentation: Supply heat and flow it in controlled manner through liquid.	CO4	
Results & Discussions: Thermal conductivity of liquid is calculated.		
Experiment No.12: Study of design & analysis of heat pipe.		
Aim & Objective: Study construction and working of heat pipes.		
Outcomes: Application of heat pipes in heat evacuation from internally heated systems.	CO1,CO3	
Experimentation: Study types of heat pipes and their working principle.		
Results & Discussions: Heat pipes help in enhancement of rate of heat transfer.		